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Steam-blown fluidized bed gasifiers

Fluidized bed: Favorable reactor technology for biomass
gasification with minimum pretreatment

Advantages:

* High levels of intermixing

» Suitable for coarse particles with large residence times
Disadvantages:

* Lower levels of carbon conversion with considerable
tar content

Steam as a gasification agent:

Advantages:

* Reduced cost, no air separation is needed

* In the absence of oxidation, hot zones are avoided in
the bed

Disadvantages:

* Biomass devolatilization and char gasification are
endothermic

e External heating is needed for controlling the process




Key phenomena in a fluidized bed gasifier

Multi-scale process:

* Gas-phase chemistry
 Surface chemistry

* Single-particle modeling
* Hydrodynamics
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e Development of a multiscale CFD methodology for the reactive multiphase
simulations to assist the design and optimization of gasification processes by
reducing the cost, compared with experiments, and offering information for

integration in ROM



Modeling Challenges: Initial char loading

* Challenge: Steady state char inventory takes hours to reach for
gasification conditions

— Initial transient too long for CFD simulation

e Solution: Standalone MATLAB steady state char conversion model
computes char inventory for CFD initial condition

— Char gasification and combustion
— G@Gasification assisted attrition due to hardness reduction
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Steady state char inventory for steam blown

gasifier

. Inputs:
Gas composition (XCO2,XH20...) P
Reactor temperature, pressure,
Initial biomass particle size
/ Char conversion model

Min rawlkg/sec] steady biomass feed rate
Yenarlkg/kg] char devolatilization yield

Transient model:
System of ordinary —_—>
differential equations

Steady state model:
Iterative solver for
average residence time

\J )

Computational cost
<lsec

Average char inventory (kg)
Average char resident time (sec)
Average char conversion (-)

Outputs:

CFD initial conditions :

-char inventory
-particle size

T=700 °C
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Modeling Challenges: Chemistry description
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e Challenge: Number of species/reactions 4 B
prohlbl-tlvely large for use in CFD | P .
* Solution: Use of Global models for pyrolysis e s )

and tar cracking [1]




Global devolatilization model

Particle-Scale Devolatilization

Devolatilization dynamics are Modeling Framework

strongly influenced by particle
radius.
Shrinking Core Model External

Implemented for Eulerian Heat Transfer Primary
Modeling Framework: Inte Pyrolysis
Products

Raw Biomass

Trade-off of devolatilization
time and mixing time
important for well-stirred
assumption.

Reaction Zone




FUEL

Modeling Challenges: Hydrodynamics

Raw biomass injected as particles and removed as char

Biomass typically <2-3% of bed mass

Bed temperature 600-1000°C
Very rapid heat up

Mixing and particle residence times are very important to product
composition and conversion
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Devolatilization time scales
are similar with mixing time
scales, so accurate prediction
of the position of raw biomass
is important



CFD modeling strategy for gas-particle flows
Two Fluid Model

Both phases are considered as fully - Gas Phase — Eulerian Framework
interpenetrating continua Particle Phase = Eulerian Framework

ADVANTAGE: High computational efficiency makes this method more

attractive since parametric and design studies of large-scale systems are
feasible

DISADVANTAGE: Closures are required for the modeling of:
* Interphase momentum exchange
* Particle-particle interaction

Numerical tool: MFIX (DOE-NETL) [2,3]




Bed material
Size, dp'
Density p,,

Minimum Fluidization u_,
Superficial velocity, u,

Bed diameter, d, 4
Bed Height

Bed temperature, T, 4
(heated walls)

Inlet gas composition X4

Input biomass feed rate ;, ,
Biomass mean diameter dbio’0

Steam flow rate

NREL gasifier

Olivine (mgFe),sio,
270 um
3300 kg/m?3

~0.037m/s
~0.12 m/s

4"'(0.106 m),
0.13m

750, 800, 850 °C,

N2
N2

100% H,0(%vol)
<2% Helium N2

800g/hour (AR
1 mm Ar
800g/hour

Feed

MFC

MFC

MFC

PCV

PT

MBMS

TE
TE |MAX

T TCD

TC NDIR

TE

TC

TE Temperature Element
TC Temperature Controller
PT Pressure Transmitter
PCV Pressure Control Valve
MFC Mass Flow Controller



130 cm

10.6 cm

Simulation setup

e 2D simulations of a steam blown gasifier
(Both reacting and non-reacting)
* 3 solid phases considered
e Biomass : Rho=600kg/m3, d=1mm
* Char: Rho=170kg/m3, d=0.38mm
* Sand : Rho=3300kg/m3, d=0.27mm

* Drag model: Gidaspow
* Inter-particle drag model: Gera et al. 2004 [4]
* Friction coefficient, C;=0.1
* Segregation slope coefficient, C,=0.1
* Partial slip BC for solids
* Specularity coefficient, ¢ = 0.05 [5,6]
* Dirichlet BC for temperature (1023 K) along walls and inflow
* Initial Condition
e Static bed height: 24.4 cm
€ sang = 0.4582
* Egpar=0.1218

e Resolution: 40X400 cells



Chemistry description

Chemical mechanism
* Drying

* Devolatilization (Competing pathways following Gronli 2000 [7])
bio -->7.7872H2 + 4.7274C0 + 4.3016C02 + 1.7109CH4 + 6.9712H20

bio --> 6.2792tarl

bio --> 40.8361FC1

e Tar cracking (Details in following slides)

* Water gas shift (Fast kinetics Biba 1978 [8])
CO + H20 --> H2 + CO2

H2 + CO2 --> CO + H20

e Char gasification (Hobbs 1992 [9])

C+C02-->2CO
C+H20-->CO +H2



Tar cracking reaction

Tarl - light gases + inert tar

Component mass Seebauer 1999
fraction

Light gases 0.78
Tar 0.22

inert

Tar1 - 1.5709C0+0.197C0O2 + 0.4304CH4 + 0.6704H2+ 0.22Tari

* Both tarl and tari are considered to be benzene
* The global reaction is developed for biomass pyrolysis in inert
environment (N2) at moderate temperatures
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Comparison with NREL experiments, 1023K
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The tar cracking mechanism of Seebauer 1999 over-predicts the produced inert tars by
two orders of magnitude



[dentification of major tars after devolatilization
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* Levoglucosan identified as a the major tar species present after devolatilization [10]
* Global tar cracking mechanism in a steam environment, based on leveglucosan cracking

* Benzene assumed as the major inert tar species

Tar cracking mechanism was modified using a reactor network model employing the
Ranzi mechanism to represent the LVG decomposition pattern in the absence of oxygen

Tarl(LVG) > 3.27CO + 0.2€C02 + 0.65CH4 + 1.1H2 + 2.68H20 + 0.01038Tari(Benzene)
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Comparison with NREL experiments, 1023K
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Summary and future work

Ongoing work towards validation of a reacting CFD methodology for
biomass gasification in a steam environment

Use of tools employing detailed chemistry to extract information about the
global chemical mechanisms implemented in CFD

Revisit the devolatilization mechanism by implementing more detailed
schemes

Potential effect of the emulsion phase on the water gas shift reaction

Enhancement of reactor network models employing detailed chemistry by
feeding back information about gas-solids mixing obtained from CFD



References

[1] C. Di Blassi, “Modeling chemical and physical processes of wood and biomass pyrolysis”,

Progress in Energy and Combustion Science, 2008, 34(1):47-90

[2] M. Syamlal, W. Rogers, T.J. O'Brien, “Mfix documentation theory guide”,

Technical Report, U.S. Department of Energy, National Energy Technology Laboratory, 1993

[3] M. Syamlal, W. Rogers, T.J. O'Brien, “Mfix documentation numerical technique”,

Technical Report, U.S. Department of Energy, National Energy Technology Laboratory, 1998

[4] D. Gera, M. Syamlal, T. O’Brien, “Hydrodynamics of particle segregation in fluidized beds”,
International Journal of Multiphase Flow, 2004, 30:419-428

[5] C. Altantzis, R.B. Bates, A.F. Ghoniem, “3D Eulerian modeling of thin rectangular gas—solid fluidized beds:
estimation of the specularity coefficient and its effects on bubbling dynamics and circulation times”,
Powder Technology, 2015, 270(A):256-270

[6] A. Bakshi, C. Altantzis, R.B. Bates, A.F. Ghoniem, “Eulerian—Eulerian simulation of dense solid—gas
cylindrical fluidized beds: Impact of wall boundary condition and drag model on fluidization”,

Powder Technology, 2015, 277:47-62

[7] M.G. Grgnli, M.C. Melaaen, “Mathematical model for wood pyrolysis-comparison

of experimental measurements with model predictions”, Energy Fuels, 2000, 14:791-800

[8] V. Biba, J. Macak, E. Klose, J. Malecha, “Mathematical model for the gasification of coal under pressure”,
Industrial & Engineering Chemical Process Design and Development, 1978, 17:92

[9] M.L. Hobbs, P.T. Radulovic, L.D. Smoot, “Modeling fixed-bed coal gasifiers”,

AIChE Journal, 1992, 38(5):681-702

[10] Addison Stark, “Multi-Scale Chemistry Modeling of the Thermochemical Conversion of Biomass in a
Fluidized Bed Gasifier”, Massachusetts Institute of Technology, PhD Thesis, 2015



